Convergence of positive series and ideal convergence

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Convergence and Ideal Convergence for Sequences of Functions

Let I ⊂ P(N) stand for an ideal containing finite sets. We discuss various kinds of statistical convergence and I-convergence for sequences of functions with values in R or in a metric space. For real valued measurable functions defined on a measure space (X,M, μ), we obtain a statistical version of the Egorov theorem (when μ(X) < ∞). We show that, in its assertion, equi-statistical convergence...

متن کامل

Rough Ideal Convergence

In this paper we extend the notion of rough convergence using the concept of ideals which automatically extends the earlier notions of rough convergence and rough statistical convergence. We define the set of rough ideal limit points and prove several results associated with this set.

متن کامل

Ideal convergence of bounded sequences

We generalize the Bolzano-Weierstrass theorem (that every bounded sequence of reals admits a convergent subsequence) on ideal convergence. We show examples of ideals with and without the Bolzano-Weierstrass property, and give characterizations of BW property in terms of submeasures and extendability to a maximal P-ideal. We show applications to Rudin-Keisler and Rudin-Blass orderings of ideals ...

متن کامل

Convergence of Fourier Series

The purpose of this paper is to explore the basic question of the convergence of Fourier series. This paper will not delve into the deeper questions of convergence that measure theory illuminates, but requires only the basic principles set out by introductory real and complex analysis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Mathematicae et Informaticae

سال: 2020

ISSN: 1787-5021,1787-6117

DOI: 10.33039/ami.2020.05.005